Code No.: 6212
IYDERABAD ugust-2016

Time: 3 hours

Max. Marks: 70

Note: Answer ALL questions in Part-A and any FIVE from Part-B

Part-A (10 X 2=20 Marks)

Embedded Real Time Operating Systems

- 1. Draw a typical architecture of Operating System.
- 2. Define a job, process and task in the context of Operating system.
- 3. Write in brief about the importance of scheduling algorithm used in RTOs.
- List out advantages of RMS over EDF.
- 5. What is the use of PCB?
- 6. Compare Linux 2.4 and Linux 2.6.
- 7. Differentiate between Kernel mode and user mode of OS operation.
- 8. What are Tasklets and where do we use them?
- 9. Distinguish Linux and RT Linux.
- 10. List the intertask communication methods in VxWorks.

Part-B $(5 \times 10 = 50 Marks)$

11. a) What is OS and write the importance of OS in Embedded Real-time systems? [4] b) Define scheduling. And why is it required in Operating systems? Briefly write about [6] different scheduling algorithms used in ERTOS. 12. a) How does a message queue function works as a method for intertask communication? [5] Explain with an example. b) Explain the principle of operation of the EDF algorithm with an example. [5] 13. a) How secured is Linux and what makes it secured when compared to other operating [4] systems? b) What is interrupt context and how it is implemented in Linux? [6] 14. a) Discuss the use of Major number and minor number in device drivers. [4] b) Classify the device drivers, give one example and write in short about each one of them. [6] 15. a) Discuss about Debugging techniques used to monitor kernel code and to trace errors. [6] [4] b) Compare and contrast between the scheduling algorithms of VxWorks, μcos and RTLinux. 16. a) A real-time system consists of three tasks T1, T2, and T3. Their characteristics have [5] been shown in the following table.

Task	Phase (ms)	Execution Time (ms)	Relative Deadline (ms)	Period (ms)
T_1	20	10	20	20
T_2	40	10	50	50
T ₃	70	20	80	80

Suppose the tasks are to be scheduled using a table-driven scheduler. Compute the length of time for which the schedules have to be stored in the pre-computed schedule table of the scheduler.

b) A cyclic scheduler is to be used to run the following set of periodic tasks on a uniprocessor: T1: (e1=1, p1=4), T2: (e2=2, p2=5), T3: (e3=1, p3=20), T4: (e4=2, p4=20). Select an appropriate frame size.

17. Write short notes on any two of the following:

a)	Functions of an RTOS	SOCIONA SALCON CONTROL DE LA CONTROL DE	[5]
b)	mknod and sudo	PGOMPA AND THE STATE OF THE STATE OF	[5]
c)	Features of µcos		[5]
		The second district and the state of the second	

##